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It is possible to compare results for the classical tests for embeddings of chaotic data with the results of a
recently proposed test. The classical tests, which depend on real numbers �fractal dimensions, Lyapunov
exponents� averaged over an attractor, are compared with a topological test that depends on integers. The
comparison can only be done for mappings into three dimensions. We find that the classical tests fail to predict
when a mapping is an embedding and when it is not. We point out the reasons for this failure, which are not
restricted to three dimensions.
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I. INTRODUCTION

The treatment of data generated by chaotic dynamical sys-
tems involves two separate steps. The first is the search for
an embedding of the data into a phase space of suitable di-
mension. The second is an analysis of the reconstructed cha-
otic attractor once a suitable embedding has been found.

At the analysis stage, the embedded attractor can be stud-
ied using tools that can broadly be classified as geometric,
dynamical, or topological. The geometric and dynamical
tools can be applied to an attractor reconstructed in a phase
space of any dimension, but at present the topological tools
can be applied only to attractors embedded in a three-
dimensional space. To compensate for this restriction, the
topological tools reveal the mechanism responsible for pro-
ducing chaotic behavior. In addition they are overdeter-
mined, so that the results of an analysis can be rejected if
well-defined self-consistency criteria are not met. Geometric
and dynamical analysis methods do not reveal mechanism.

At the embedding stage, tests to determine whether a
mapping is an embedding or not have been of two types in
the past: geometric and dynamical. As for analyses, these
tests for embeddings are applicable to any dimension. They
all lack rejection criteria. We have recently proposed a topo-
logical test for embeddings �1�. This topological test is ap-
plicable only to three-dimensional mappings of data. How-
ever, this test supports strong rejection criteria.

There have been many claims of successful embeddings
of data based on geometric measures �fractal dimensions,
false near neighbors� or dynamical measures �Lyapunov ex-
ponents and dimensions, predictability�, but few independent
tests of whether such claims are valid. For this reason, in the
present work we will compare the results of tests for embed-
dings using the three different tools currently available in
three dimensions. We find that tests for embeddings based on
geometric measures and dynamical measures fail to distin-
guish between mappings that are embeddings and those that
are not. We discuss sources for such failures and the impact
of noise on these tests. In view of our results in three dimen-
sions where the topological test is available to test claims
based on geometric and dynamical methods, we suggest that
all claims for successful embeddings into three or higher

dimensions, based on geometric or dynamical methods, be
treated with the greatest skepticism.

This work is organized as follows. In Sec. II we review
the tests for embeddings that have been proposed. In Sec. III
we describe the two sets of data used for this comparison. In
Secs. IV–VI we present the results of the geometric, dynami-
cal, and topological tests for the mappings of these data sets.
The real measures involved in the classical tests undergo
intrinsic fluctuations from one data set to another. The statis-
tics of these fluctuations are discussed in Sec. VII. In Sec.
VIII we describe why the classical tests, depending on real
measures averaged over the mapped attractor, can be insen-
sitive to whether the mapping is or is not an embedding.
Each test depends on values of one or more parameters that
must be set before the test is implemented. Test results could
depend on these parameter values. The parameters intrinsic
to each type of test are discussed in Sec. IX. We compare the
relative computational load for these three types of test in
Sec. X. The effects of noise on the robustness of these tests is
discussed in Sec. XI. In Sec. XII we summarize our findings:
all assertions that a mapping is an embedding based on geo-
metric or dynamical tests should be treated as provisional
and regarded with skepticism until independent tests either
reject or fail to reject such claims.

II. REVIEW OF EMBEDDING TESTS

The first step in the analysis of chaotic data is a search for
a suitable embedding �2–4�. An embedding is a mapping of
the data into a phase space RD without self-intersections, so
that each point in the attractor has a unique future and deter-
minism is preserved �5�. An embedding creates a diffeomor-
phism between the original attractor and the reconstructed
attractor. If the data are chaotic, D�3 �6�.

Mappings of scalar time series into RD take the form
m�t�→ (x1�t� ,x2�t� ,x3�t� , . . . ,xD�t�), where the coordinates
xi�t� are functions of the observables. A number of mappings
have been proposed. The default is the time delay mapping,
in which xi�t�=m�t− �i−1���, where � is the time delay
�2–4�. Another very useful mapping is the differential map-
ping, in which xi�t�=d�i−1�m�t� /dt�i−1� �7�. Other useful map-
pings take the form of mixtures of these two types—for
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example, m�t�→ (m�t� ,dm�t� /dt ,m�t−��), singular value de-
composition �SVD� mappings, and Hilbert transform pairs.
Classes of mappings have been reviewed in �8–12�. Projec-
tions of various types, involving Fourier or SVD decompo-
sitions, are particularly useful for vector time series. Projec-
tion of data from higher into lower dimensions �13� is similar
in spirit to reductions of partial differential equations to sets
of ordinary differential equations �14,15�.

Low-dimensional differential embeddings, when they can
be found, offer a strong advantage over other types of em-
beddings. The advantage comes in the next natural step in
the analysis. This is the construction of a model, a set of
ordinary differential equations, that simulates the process
generating the data. When a differential embedding is avail-
able, the derivative of each variable is the next variable
�dxi /dt=xi+1�, so it is only necessary to model the dynamics
of the last variable: dxn /dt= f�x1 ,x2 , . . . ,xn�. For a time delay
embedding it is necessary to construct n functions, each of n
variables: dxi /dt= f i�x1 ,x2 , . . . ,xn�, i=1,2 , . . . ,n.

Once observed data have been mapped into a
D-dimensional phase space it is necessary to determine
whether the mapping is an embedding. A number of embed-
ding tests have been used extensively in the past. They all
share a common feature: they are implemented as a function
of increasing dimension, a real statistic is averaged over the
image of the attractor, and a mapping is declared an embed-
ding when a threshold is reached. These classical tests are of
two broad types: geometric and dynamical. Each type has
many variants. The earliest test was geometric. It depended
on computing geometric invariants �16� such as fractal di-
mensions and looking for “saturation of fractal dimensions”
as a function of increasing dimension �17–19�. In principle,
fractal dimensions are invariants under diffeomorphisms, so
that they saturate at constant values with increasing dimen-
sion. In practice, this test was difficult to implement. As early
as 1990, Ruelle cautioned about undue reliance on these un-
reliable measures �20�. Then in 1992 Lefranc and colleagues
showed that correlation dimension estimates of experimental
data were in practice not invariant under a simple logarith-
mic transformation �21�.

Embedding tests depending on fractal dimension esti-
mates were largely superseded in practice by the “false near
neighbor” test �22�. This test looks at two points near each
other in some mapping and determines whether they remain
near each other as the dimension increases. If “yes,” the two
points are assumed near each other in the original attractor
that generated the data. If “no,” the two points are considered
false near neighbors. A mapping is declared an embedding
when a sufficiently small percentage of point pairs are deter-
mined to be false near neighbors.

Dynamical tests are similar in spirit. If a mapping is an
embedding, then a point in RD has a unique future. Predict-
ability of the future from the present was implemented in the
“bad prediction” test �23�. This same property was imple-
mented in another way as a “test for determinism” �24�. In
this test the phase space was decimated in each dimension
and the uniqueness of the flow direction in each
D-dimensional cube was estimated by computing inner prod-
ucts of tangent vectors to all trajectories passing through
each cube. Both these dynamical tests declare a mapping to

be an embedding when the relevant statistic reaches an ap-
propriate value. Data requirements for the test for determin-
ism grow exponentially with dimension D and decimation
degree. To average n points per box in a D-dimensional map-
ping with decimation degree d, ndD points are required.

In part because of large data requirements, this class of
tests was largely supplanted by tests depending on Lyapunov
exponent estimates �5,25–29� and Lyapunov dimension esti-
mates �30� that are derived from them. The basic idea is that
as the dimension increases, estimates of the largest Lyapunov
exponent become reliable when and after an embedding is
achieved. A major problem is that the number of Lyapunov
exponents is equal to the dimension of the mapping. Above
the correct embedding dimension there are spurious expo-
nents, and these can be larger than the largest Lyapunov ex-
ponent �31,32�. We concentrate our study on Lyapunov ex-
ponent tests with the understanding that other dynamical
tests for embeddings are in principle still possible.

The topological test is applicable to families of three di-
mensional mappings. The essential idea is that for the map-
ping to be an embedding, each point must have a unique
future: self-intersections are forbidden. If the chaotic attrac-
tor undergoes self-intersections as some parameter in the
family varies, then the unstable periodic orbits that exist in
abundance in the attractor will also undergo intersections.
When two unstable periodic orbits undergo a self-
intersection, the minimum distance between these orbits goes
to zero. In such cases, a plot of the minimum distance be-
tween two orbits as a function of the mapping parameter
shows a dip towards zero, followed by a rise from zero after
the crossing. We call such events “zero crossings.” The zero
crossing may be resolution limited. In such cases, the zero
crossing can be confirmed by computing an important topo-
logical index. The Gauss linking number changes by �1 at a
zero crossing, or at an intersection of two unstable periodic
orbits �7,11,12,33�.

The basic idea of and algorithm for the new topological
test for embedding is simple to state �1�. �i� Search through
the time series for unstable periodic orbits. This can be done
by the method of close returns before any embedding is at-
tempted �11,12,34�. �ii� Choose a family of mappings de-
pending on some parameter and map these orbits into R3.
�iii� Compute the minimum distance between each pair of
mapped orbits in the parameter range. The mapping cannot
be an embedding where any of these minima show zero
crossings. If a zero crossing is uncertain �cf, Fig. 12 below�,
compute the linking number �11,12,33� of the two orbits on
each side of the apparent crossing. At a real crossing the
linking number changes by �1. In parameter regions where
the linking numbers of two or more orbit pairs change
frequently—that is, where many zero crossings occur—we
can reject the hypothesis that the mapping is an embedding.
Where there are no zero crossings, the linking numbers re-
main unchanged and it is not possible to reject the hypothesis
that the mapping is not an embedding �in friendlier words,
the mapping could be an embedding�.

Confirming that the mapping is an embedding follows
from a topological analysis of the mapped attractor. This type
of analysis can even be applied to a single mapping not
belonging to a family of mappings, to determine whether it is
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an embedding or not. Details are available in �7,11,12�.
Behind all these tests lurk the embedding theorems. These

guarantee that if the dynamics is produced by an
n-dimensional dynamical system, the data describing the dy-
namics can always be embedded in RD for D sufficiently
large. These theorems are based on the idea that if the di-
mension is sufficiently large, there is enough room in phase
space so that self-intersections typically �“generically”� do
not occur. The simplest estimate D�2n+1, based on ge-
nericity, was reduced to D�2n by Whitney �35� and reduced
once again to D�2dA �36�, where dA is an appropriate frac-
tal dimension. For the Lorenz attractor �15� with dA=2.06 for
�R ,� ,b�= �28.0,10,8 /3�, these theorems guarantee that an
embedding into RD with D�5 can always be found. As
pointed out by Abarbanel and collaborators �8,9,22�, for
those interested in knowing the minimum �necessary� dimen-
sion for having an embedding, to have a sufficient condition
is useless. If the dynamics is three dimensional, we need an
algorithm for constructing a three-dimensional embedding
rather than a theorem stating that a five-dimensional embed-
ding exists.

Once a suitable embedding has been determined, the em-
bedded data can be analyzed. The analysis procedures are of
three broad types: geometric �18�, dynamical �25�, and topo-
logical �7�. Geometrical analyses focus on computing the
spectra of fractal dimensions or the fraction of false near
neighbors. Dynamical analyses focus on estimating
Lyapunov exponents and predictability indices. These calcu-
lations can be carried out for any value of the dimension D.
The results are real numbers with no underlying statistical
theory to provide believable error estimates �error bars are
“educated guesses” �19�� and no information about the
mechanism that generates chaotic behavior. Topological
analyses can be carried out only when D=3. The results are
overdetermined and therefore contain their own rejection cri-
teria �7,11�, an assertion that cannot be made for the other
two analysis methods. Further, these analyses reveal the na-
ture of the bending and folding mechanism �37� or the
stretching and squeezing mechanism �38� responsible for
generating chaotic behavior.

III. COMPARISON DATA SETS

We use two data sets to compare the three types of tests
for embedding. In neither case do we employ a standard time
delay embedding. For this reason the standard types of
analyses employed with geometric and dynamical tests—
saturation of some real measure—are not available.

Data taken during a fluid experiment in a Benard-
Marangoni configuration �39� were analyzed �40� and mod-
eled as a periodically driven Takens-Bogdanov oscillator
�41� in the following form:

ẋ = y ,

ẏ = ��x + �y�f�	� − x3 + x2y ,

	̇ = 
 , �1�

where f�	�=1+� cos�	�. The parameter values were taken
as �� ,� ,� ,
�= �1.0434,−1.0,0.45,0.399�. A single scalar
time series x�t� was produced by this model and mapped
from R1 into R3 a with mixed differential-delay type map-
ping that was explicitly x�t��R1→ (x�t� ,dx�t� /dt ,x�t−��)
�R3 �41�. The mapping parameter is the single time delay �.
For some values of the delay the mapping is an embedding
while for others it is not. The analysis leading to these con-
clusions has been described in �42� and will be reviewed in
Sec. VI.

A three-dimensional differential embedding x�t�
→ �x , ẋ , ẍ� would have been preferable for reasons given
above, but was not used because of noise involved in com-
puting ẍ �7,39�. A standard time delay embedding xi�t�=x�t
− �i−1��� would have involved determination of three forc-
ing functions dxi /dt= f i�x1 ,x2 ,x3�. For this reason the mixed
differential-delay embedding was adopted �41�.

Previous study �40,42� has shown that the one-parameter
family of mappings depending on the single time delay � is
an embedding for some values of � and not for others. We
show below that the topological test can distinguish between
values of � for which the mapping is an embedding and for
which it is not, while the geometric and dynamical tests fail
to make this distinction.

The second data set that we used to compare the three
methods of testing for embedding is a four-vector time series
produced by the dynamical system �43�:

Ẋ = ��− X + Y� − 7.1111�U ,

Ẏ = �R/��X − Y − XZ ,

Ż = − �Z + XY ,

U̇ = − 
U + X . �2�

This system is a modification of the Malkus-Robbins dy-
namo equations �involving only �X ,Y ,Z�� which were origi-
nally introduced to model the action of a self-exciting dy-
namo �44–46�. The extension is to include the variable U,
which represents the angular speed of the motor of the dy-
namo �45�. For �=0 there is no feedback from the U sub-
system into the �X ,Y ,Z� subsystem, which behaves like a
Lorenz attractor. The dynamics was studied for �� ,� ,R�
= �10,8 /3,74.667�, where the Lorenz equations generate a
chaotic attractor and 
=3.2. In the range 0���7.9, Eq. �2�
generates a chaotic attractor with Lyapunov dimension dL
�2.2 �43�. A boundary crisis destroys the attractor at �
�7.9.

In this case all four time series (X�t� ,Y�t� ,Z�t� ,U�t�) are
available. This is not usual for experimental systems. The
question that drives this analysis is one of reducing complex-
ity. Is it possible to simplify the study of this dynamical
system by projecting the attractors into a lower- �three-� di-
mensional space? In this case we do not have a single attrac-
tor and a family of mappings into R3. Rather, there is a
one-parameter ��� family of attractors, and we seek to deter-
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mine whether the projection into some R3 subspace is an
embedding for all, some, or no values of the parameter �
�43�.

We used topological tests for embeddings and topological
analyses to determine under what conditions the two projec-
tion mappings �X ,Y ,Z ,U�→ �X ,Y ,Z� and �X ,Y ,Z ,U�
→ �X ,Y ,U� were or were not embeddings. We found the first
projection failed to be an embedding in the range 0.6��
�5.4. In this parameter range the projected attractor under-
goes self-intersections �cf. Fig. 15 below� and the unstable
periodic orbits in the attractor undergo many zero crossings.
The second projection �X ,Y ,Z ,U�→ �X ,Y ,U� was an em-
bedding for all values of the parameter �. The attractor un-
dergoes no self-intersections as a function of � in this pro-
jection. The analysis leading to these conclusions has been
described in �43� will be reviewed in Sec. VI.

The two sets of time series studied below have been pro-
duced by Eqs. �1� and �2�.

IV. GEOMETRIC TESTS

Two types of geometric tests were carried out. One de-
pends on estimating the fraction of false near neighbors as a
function of the appropriate parameter. The other involves
estimating the correlation dimension, also as a function of
the mapping parameter.

A. False near neighbors

The false nearest neighbors �FNN� test was applied fol-
lowing the usual procedure �22�. A point x�i� is chosen, and
all points x�j� are searched over whose first k coordinates are
within a distance � of each other: �xr�i�−xr�j����, r
=1,2 , . . . ,k. For each such x�j� the k+1st coordinates of x�i�
and x�j� are compared and the points at i and j are declared
true neighbors if �xk+1�i�−xk+1�j���5� and false neighbors
otherwise. The number of true and false neighbors is com-
puted for each point x�i� and the ratio of false neighbors to
the total number of its neighbors is computed. As k increases,
this ratio decreases, and when it gets “small enough,” an
embedding is declared. In this estimate � was chosen as 1%
of the diameter of the attractor. We point out that � and 5 are
reasonable but arbitrary input parameters.

1. Fluid model

In order to carry out the FNN test on the fluid data to see
if a three-dimensional embedding exists we need at least four
coordinates. The first three were prescribed by the family of
mappings chosen: (x�t� ,dx�t� /dt ,x�t−��). As a fourth coor-
dinate we chose x4�t�=x�t−2�� in the spirit of standard time
delay embeddings. To check that the codes developed to per-
form this computation were robust, we included a fifth coor-
dinate, chosen again in the spirit of standard time delays as
x5�t�=x�t−3��. If the first three coordinates did not provide
an embedding, the first four should, so that the fraction of
FNN in going from four to five dimensions should fall to
approximately zero. This provided a test of the computa-
tional procedure. The test was carried out for data sets of

length 5000 points. Some larger data sets were used without
the results being altered in any way.

We computed the fraction of FNN in going from N=2 to
3 dimensions, N=3 to 4, and N=4 to 5 dimensions. The
results are shown in Fig. 1, plotted as a function of the delay
parameter �. For N=2 the fraction of false near neighbors is
in excess of 0.5. This is to be expected, as two-dimensional
systems cannot behave chaotically. For N=4 the fraction of
FNN is zero or almost zero for all delays. This is also ex-
pected, as the system is three dimensional �42�. For N=3
there is a substantial fraction of FNN. Further, this fraction
does not show any clear signatures that a three-dimensional
embedding occurs for some values of the delay � in this
region and not for others. This curve is a clear indication that
the FNN test fails to distinguish between mappings that are
embeddings and those that are not in the present case.

2. Dynamo model

The FNN test was also applied to the dynamo data x�i�.
One data set was chosen in the form �X ,Y ,Z ,U�. As applied,
we tested whether two points with indices i and j whose
�X ,Y ,Z� coordinates were close in the R3 subspace were also
close in the full space R4. The FNN test was carried out as a
function of the parameter �. The FNN test was also carried
out on the reordered data �X ,Y ,U ,Z� to test in the same way
whether the projection into the �X ,Y ,U� subspace was an
embedding.

Results of this test are shown in Fig. 2. This figure shows
the FNN ratio as a function of the parameter �. The detailed
nature of these curves depends on the choice of input param-
eters � and 5, but the conclusions drawn do not. The curve
for the �X ,Y ,Z� projection shows nothing significant at either
�=0.6 or �=5.4, where the transitions occur from the pro-
jection being an embedding to not being an embedding �1�.
In the range 0.6���5.4 the projected attractor exhibits self
intersections.

If the hypothesis is formulated—this projection is an
embedding—it is not unreasonable to reject this hypothesis
when the variance around the mean stops hitting the � axis.
For the �X ,Y ,Z� projection this occurs with � decreasing at
��3.2. One would reject this hypothesis for ��3.0 and fail
to reject it for ��4.0. Both conclusions are incorrect.
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FIG. 1. Fraction of false near neighbors as a function of time
delay � for embedding dimensions N=2,3 ,4.
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For the �X ,Y ,U� projection, the FNN ratio variations
about the mean never include zero. Once again, if the hy-
pothesis is formulated—this projection is an embedding—
the hypothesis would be rejected for all values of �. It is
known from topological analyses that the projection
�X ,Y ,Z ,U�→ �X ,Y ,U� is an embedding for all values of �
�43�.

The results are that the FNN test failed to determine con-
ditions under which these projections are embeddings.

B. Fractal dimension

Fractal dimension tests are usually carried out on time
delay embeddings, increasing the dimension of the embed-
ding until changes in the form of the correlation integral
curve become small enough. We cannot adopt this strategy
here, since we seek to learn when a three dimensional map-
ping is an embedding. As a result, the only quantitative cri-
terion available to us is to make a judgement based on the
value of the computed fractal dimension. We understand that
using fractal dimension as an indicator that an embedding
has been achieved is often quite different from the actual
computation of the fractal dimension. Unfortunately, the pos-
sibility is not open to us to raise dimension until changes in
the correlation integral curve become small enough, so we
can only base our hypothesis tests on the estimated value of
this statistic in the mapping into R3: the fractal dimension
D2.

The correlation integral D2 was computed following stan-
dard recipes �17,18�. All such calculations were done simul-
taneously with estimates of the largest Lyapunov exponent,
as explained in Sec. V below. A plot of the logarithm of the
correlation integral �i,j�(�− �x�i�−x�j��) versus the loga-
rithm of the size � is shown in Fig. 3. All logarithms in this
work are computed to base e. The correlation dimension is
the slope of the linear part of this plot. All plots of this type
obtained using the algorithm suggested by Rosenstein et al.
�29� had a very-well-defined linear region from which it was
easily possible to obtain a good estimate of D2. This integral
was computed for the projection of the attractor at �=4.0
from the full �X ,Y ,Z ,U� space into the �X ,Y ,U� subspace.
All such integrals showed a well-defined linear region, which
was used to estimate D2.

1. Fluid model

Estimates of the correlation dimension for a three-
dimensional differential-delay vector obtained from the sca-
lar fluid data are shown in Fig. 4 as a function of the time
delay �. For �=0 the mapping is not an embedding and the
D2 estimate falls below the threshold of 2.0 �30�. For ��2
this estimate is larger than 2.0. Further, the curve shows no
particularly strong features to suggest that for certain values
of the delay � the mapping is an embedding while for others
it is not. If we were to formulate the hypothesis test—this
mapping is an embedding—we would reject this hypothesis
for values D2�2.0. On the basis of the results in Fig. 4 we
would fail to reject the hypothesis for 2���100. This con-
clusion will be shown to be incorrect below.

2. Dynamo model

The correlation dimensions for the two projections
�X ,Y ,Z ,U�→ �X ,Y ,Z� and �X ,Y ,Z ,U�→ �X ,Y ,U� were
computed as a function of �. The results are plotted in Fig. 5
for the �X ,Y ,Z� projection and in Fig. 6 for the �X ,Y ,U�
projection. The variance observed in these plots is not a
function of changing �; it is intrinsic, a function of changing
the data set. This is discussed further in Sec. VII. In both
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FIG. 2. �Color online� Fraction of false near neighbors under the
projections to the �X ,Y ,Z� �dark� and �X ,Y ,U� �light� subspaces.
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FIG. 3. Logarithm of the correlation integral as a function of the
logarithm of the distance � for the three-dimensional projection
�X ,Y ,Z ,U�→ �X ,Y ,U� of the dynamo model for �=4.0.
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delay, for a three-dimensional differential-delay mapping of x�t�
from the fluid model.
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cases the correlation dimension curve D2 shows less variance
than the largest Lyapunov exponent curve.

There is no special signal in the D2 curve for the �X ,Y ,Z�
projection that the mapping is not an embedding in the range
0.6���5.4.

The hypothesis test—the projection is an embedding—
can be formulated and treated as described above. In the
�X ,Y ,Z� case we reject the hypothesis that there is an em-
bedding where there actually is one �small �, large �� and
fail to reject this hypothesis when the projection is not an
embedding. In the �X ,Y ,U� case D2 is always less than 2.0,
but the mapping is always an embedding. As a result, under
this test completely incorrect conclusions are reached.

V. DYNAMICAL TEST

The dynamical test that was carried out involved estimat-
ing the largest Lyapunov exponent �LLE� as a function of the
appropriate parameter. The LLE was estimated using an al-
gorithm proposed by Sato et al. �26� and implemented using
suggestions made by Rosenstein et al. �29�. A small modifi-
cation in this algorithm, also proposed in �29�, was used to
estimate the correlation dimensions that are presented above.

Briefly, we look at discretely sampled time series in three
variables �x1 ,x2 ,x3�i, fix i, and search over the entire time
series for the nearest neighbor j. Once found, we compute
the distance between these two points as they propagate k
steps into the future �k up to 2000 steps�. The logarithm of
the distance is computed for each k. These measures are
averaged over the entire data set, i. The “linear portion” of
the �loge�divergence�	 vs k curve is fitted with a straight line,
and the slope of this fit, divided by dt, is an estimate of the
largest Lyapunov exponent. Our implementation of this algo-
rithm was verified by reproducing Fig. 2 in �29�. That curve
has more than one “linear portion,” and each such portion is
far from linear. A straight line of the form y=a+bx was fitted
to various parts of that curve using a moving average win-
dow and sliding center. By choosing an appropriate part of
the curve it was possible to reproduce their estimate of 1.50
for the largest Lyapunov exponent of the Lorenz attractor at
particular parameter values using windows of various half-
widths from 5 to 100. However, other parts of the curve and
other window widths provided estimates ranging from about
3 down to almost zero.

Plots of �loge�divergence�	 vs k for three-dimensional pro-
jections of the dynamo data always had two, sometimes
three, and occasionally four “linear portion” regions, and
each region usually had small fluctuations. One such curve is
shown in Fig. 7. This curve was computed simultaneously
with the curve shown in Fig. 3. These results are typical of
the dynamo data: the correlation integral curves usually
showed a single linear region while the �loge�divergence�	
curves had several.

The corresponding �loge�divergence�	 curves for the fluid
data were remarkably different. One such curve is shown
in Fig. 8. This curve has no locally linear regions under
the most optimistic assumptions. Estimates of the
�loge�divergence�	 curves were made by smoothing over
long intervals. We do not regard such estimates as very sig-
nificant.

We do not know of any hypothesis test on whether a
mapping is an embedding that is reasonable to formulate
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FIG. 5. �Color online� Estimates of the fractal dimension D2

�top curve� and the LLE �bottom curve� for the �X ,Y ,Z� projection
of the dynamo model.
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�top curve� and the LLE �bottom curve� for the �X ,Y ,U� projection
of the dynamo model.
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FIG. 7. Estimate of the logarithm of the divergence as a function
of the number of forward time steps for the projection
�X ,Y ,Z ,U�→ �X ,Y ,U� of the dynamo model at �=4.0. The largest
Lyapunov exponent is to be estimated from the slope of the “locally
linear” region. This curve was computed simultaneously with the
curve shown in Fig. 3, which has a single linear region.
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using the largest Lyapunov exponent as a quantitative mea-
sure.

A. Fluid model

We estimated �loge�divergence�	 as a function of the num-
ber of forward time steps for time delays 1���100. Each
of these curves resembled that shown in Fig. 8. We felt it was
meaningless to try to estimate the LLE from such data. Nev-
ertheless, we fixed a range of forward time steps �300�k
�500� and used this range to fit a straight line y=a+bx and
extract the slope m. The result is shown in Fig. 9. There are
no clear signatures in this curve that the mapping is an em-
bedding for certain values of the delay and not for others.

B. Dynamo model

We computed the largest Lyapunov exponents for both the
�X ,Y ,Z� and �X ,Y ,U� projections for all values of � in the
interval �0, 7.8� with ��=0.01. An interval was chosen �dif-
ferent for the two embeddings� where all plots seemed to
have a linear region. The results are shown in Figs. 5 and 6.
In both cases the LLE is the lower curve with the larger
variance. Neither curve shows any remarkable behavior that
would distinguish between a projection that is an embedding
and one that is not.

VI. TOPOLOGICAL TESTS

The topological test depends on finding and using the un-
stable periodic orbits in the chaotic data set. Such orbits can
be identified in scalar time series even before an embedding
into R3 is attempted �7,11,12�. The topological test for em-
bedding looks for stability of the linking numbers between

all pairs of unstable periodic orbits. Even more simply, it
looks for intersections of such orbits or even intersections of
an orbit with itself. Intersection of two orbits is identified by
computing the minimum Euclidean distance between two or-
bits and plotting this distance as a function of the mapping
parameter. Intersections appear as a V-shaped almost inter-
section of the minimum distance curve with the mapping
parameter axis. In regions where zero crossings occur and
linking numbers of unstable periodic orbits change, the map-
ping cannot be an embedding.

A. Fluid model

The topological test for embedding of data from the fluid
model was simplified as follows. The lowest-period orbit in
the attractor was located before any embedding was made.
Its projection into the x-ẋ plane is independent of � and is
shown in Fig. 10. This orbit is “in the attractor,” so is sur-
rounded by a tube �a torus� that contains the attractor. If this
orbit undergoes a self-intersection for �=�1, the tube, and the
attractor it contains, undergo self-intersections in an interval
containing �1. The mapping cannot be an embedding in this
interval of parameter values.

The projection of this curve onto the x1-x2 plane is shown
in Fig. 10. There are four crossing points in this projection.
At each crossing point the first two coordinates of each of the
two segments that cross are equal. If the third coordinates are
also equal, the curve has a self-intersection at that point.

The difference between the third coordinates of the two
segments is shown in Fig. 11. The difference in the x3 coor-
dinates at each of the four crossing points a-d in the x-ẋ
projection is shown in Fig. 11 as a function of �
=T1�j /1024�, where T1 is the period of this orbit. When this
distance is zero the orbit has a self-intersection and the map-
ping cannot be an embedding. We have computed topologi-
cal invariants for periodic orbits in this attractor and their
changes from one embedding interval to another. In each
instance the change in global torsion �11,12� is �GT= �2.
This is consistent with a change in the extrinsic embedding
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FIG. 8. Estimate of the logarithm of the divergence as a function
of the number of forward time steps for the fluid data. The largest
Lyapunov exponent is to be estimated from the slope of the “locally
linear” region.
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FIG. 10. Projection of the lowest period orbit onto the x-ẋ plane
is independent of the time delay � in the mixed differential-delay
mapping. There are four crossing points in this projection.
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caused by a self-intersection of the chaotic attractor �cf, Ref.
�42�, Fig. 9�.

B. Dynamo model

We used topological tests to determine whether the pro-
jections of the attractor generated by Eq. �2� from R4 into R3

given by �X ,Y ,Z ,U�→ �X ,Y ,Z� and �X ,Y ,Z ,U�
→ �X ,Y ,U� are in fact embeddings. We did this by extracting
periodic orbits from the chaotic time series in R4 by the
method of close returns �34,47�. A set of these orbits was
followed adiabatically as the parameter � varied through the
range 0���7.9. The minimum distance and the linking
numbers between all pairs of orbits were determined as a
function of � for each of the two projections.

In Fig. 12 we show the minimum distances between two
unstable periodic orbits over a limited range of � values,
0.25���1.5. These three minimum distances were com-
puted in the full space �X ,Y ,Z ,U� and in the two three-

dimensional subspaces �X ,Y ,Z� and �X ,Y ,U�.
In the four-dimensional space the minimum distance is

smooth, varying between 1.25 and 1.5. This is expected and
consistent with a theorem that curves in spaces of dimension
greater than 3 do not intersect �12�.

In the three-dimensional space �X ,Y ,U� the minimum
distances are also bounded away from zero. In fact, in this
projection the minimum distance between any pair of the
orbits we followed was bounded away from zero for all val-
ues of �. This shows that all the periodic orbits we studied
have unchanging topological organization for all values of �.
This allows us to conclude that the chaotic attractor under-
goes no self-intersections in this projection, so that this pro-
jection is compatible with an embedding.

The situation is quite different for the projection
�X ,Y ,Z ,U�→ �X ,Y ,Z�. The minimum distance function
dives steeply to zero approaching ��0.85 and rapidly in-
creases from zero above 0.85. The zero crossing is elegantly
estimated by reflecting either of these linear sections in the
horizontal axis and connecting the dots. The failure to reach
zero is a resolution problem. The confirmation of a zero
crossing is made by computing the linking numbers of these
two orbits on either side of the crossing. The linking num-
bers differ by one, so the crossing is real. These two orbits
exhibit many other zero crossings in the range not shown in
this figure �1.5���5.4�. Other orbits exhibit zero crossings
in the range 0.6���5.4. From this we conclude that in the
range 0.6���5.4 the strange attractor undergoes a self-
intersection, forcing the orbits in it to exhibit many intersec-
tions. Outside this range there are no zero crossings, self-
intersections no longer occur, and the projection is
compatible with an embedding.

These results allow us to reject the hypothesis that the
projection �X ,Y ,Z ,U�→ �X ,Y ,Z� is an embedding in the in-
terval 0.6���5.4. We cannot reject the hypothesis that the
projection �X ,Y ,Z ,U�→ �X ,Y ,U� is an embedding through-
out the entire range 0.0���7.9. Neither can we reject the
hypothesis that the projection �X ,Y ,Z ,U�→ �X ,Y ,Z� is an
embedding outside the interval 0.6���5.4.

Where we could not rule out the hypothesis that the map-
ping is an embedding, it was subsequently determined to be
an embedding by carrying out a topological analysis �11,12�
on the periodic orbits and identifying a branched manifold
which reproduced all linking numbers and correctly pre-
dicted additional linking numbers �43�.

VII. STATISTICAL TESTS

Fluctuations in the values of the estimates of the LLE and
D2 in Figs. 5 and 6 are not due to changing the value of �.
They vary with the data set used. The LLE and D2 were
computed for data sets in the three variables �X ,Y ,Z� of
length 5000 with �=4.0. This was repeated 1001 times. The
results are shown in Fig. 13. The variance around the D2
estimate is tighter than around the LLE estimate. This possi-
bly reflects the fact that curves used to determine D2 always
had one well-defined locally linear section, while those used
for LLE estimates never did.

The mean and variance were computed for each of the
two data sets shown in Fig. 13. Each data set was scaled in
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the usual way, removing the mean and dividing the differ-
ence by the standard deviation. The results are binned in
boxes of width 0.1. The result is shown in Fig. 14. To test
Gaussianity we did a �2 test on these two distributions
against a null hypothesis of normality. We found for the D2
and LLE estimates values of 0.75 and 3.17 per degree of
freedom. We fail to reject normally distributed fluctuations in
the case of correlation dimension estimates and soundly re-
ject it for LLE estimates.

VIII. SENSITIVITY OF TESTS

Figure 15 shows a simple “cardboard model” representa-
tion of the geometric structure created by the projection
�X ,Y ,Z ,U�→ �X ,Y ,Z� for �=3.8 when it is not an embed-
ding. The dark line indicates the region in the �X ,Y ,Z� space
where the two lobes of the attractor undergo self-
intersection. This set has dimension not greater than 2
�2.2−3�1.4 �48�. This estimate comes from genericity ar-
guments. If two manifolds of dimension p and q are embed-
ded in RN and intersect, they intersect in a manifold of di-
mension p+q−N�0. For this self-intersecting chaotic
attractor in R4, p=q�2.2, and this is an upper bound on the

dimension when the attractor is projected into R3. Therefore,
its self-intersection in R3 has dimension not greater than 1.4,
and its measure in R3 is therefore zero. This is the region
responsible for failure to embed.

Geometric and dynamical tests for embedding involve av-
eraging some real statistic over the entire mapped attractor.
That is, they depend upon picking up a signal from a mea-
sure zero set. This small signal could easily be obscured by
choice of threshold parameters for these two classes of tests.
On the other hand, there is no way to misinterpret the zero-
crossing signatures of the type shown in Fig. 12.

IX. PARAMETERS

False near neighbor tests depend on three parameters. One
��� is used to determine neighbors; a second �5 in the case
described above� is used to distinguish between true and
false neighbors. The third is a threshold parameter that is
used to determine when the fraction of FNN is sufficiently
small so that the mapping can be declared an embedding.

Correlation dimension estimates use two parameters.
These are lengths: they determine the two ends of the inter-
val over which a linear curve y=mx+b is fit to estimate a
slope.

Largest Lyapunov exponent estimates use four input pa-
rameters. Two are size estimates. These are sphere radii that
are used to determine if points i and j are neighbors. The
other two define end points of the forward time interval for
which a linear curve y=mx+b is fit in order to estimate the
LLE.

Topological tests depend on one parameter. This is a
length, used to determine when two points x�i� and x�j� are
close enough to be considered points on the same unstable
periodic orbit, with j= i+ p, where p is related to the period
of the orbit and the time step size dt.

In terms of numbers of input parameters required for
these types of tests for embeddings, the topological test is the
most frugal.
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X. COMPUTATIONAL LOAD

Typical scalar data sets consist of N points that sample
about np periods with about spp points per period, so that
N�np�spp.

An estimate of the largest Lyapunov exponent requires
searching for nearest neighbors. This is asymmetric: if j is a
nearest neighbor of i, i is not generally a nearest neighbor of
j. This requires searching over all point pairs 1� i� j�N,
with a computational load of N�N−1�.

The FNN and D2 estimates involve computing distances,
which are symmetric in i and j. The search is over 1� i� j
�N, with a computational load of 1

2N�N−1�.
The number of point pairs in each search can be reduced

slightly by blocking out dynamically correlated points:
�i− j��q, where q is conveniently taken as about spp /4.

Topological tests involve close returns searches for un-
stable periodic orbits. The search is symmetric in i and j.
Assuming orbits of period up to 6 are sufficient, the search is
over i+ 1

2spp� j� �6+ 1
2 �spp, with a computational load of

about �N−6spp��6spp. The term quadratic in spp is due to
sample-size edge effects.

No matter the sample size, FNN and D2 estimates require
about half the computational effort as LLE estimates. Peri-
odic orbit searches require about 6 /np of the computational
effort. Useful data sets typically have np�100, spp�100.
For such data sets the topological approach requires about
6% of the computational search effort as LLE estimates.

The classical tests involve symmetric or asymmetric �in
the indices i and j� searches over all point pairs followed by
some post-search processing and averaging. Decisions are
made by introducing some sort of threshold and deciding
whether the average reaches this threshold. The average var-
ies from data set to data set �cf. Fig. 13� and there is no
statistical theory to go with any of this �cf. Grassberger and
Procaccia �19��, despite our findings �cf. Fig. 14�.

By contrast, the topological test involves a symmetric
search over all point pairs followed by extraction of specific
small subsets of points belonging to structures that are in-
variant from one data set to another �periodic orbits�. There
is no averaging. What can differ from one data set to another
is how close the minimum gets to zero �cf. Fig. 12�, but not
the shape of the minimum distance curve or the conclusion
of whether a zero crossing occurs or not.

XI. NOISE

The deleterious effect of noise on estimates of fractal di-
mensions and Lyapunov exponents has been extensively
documented �49,50�. In view of the failure of both types of
tests to predict correctly when a mapping was an embedding,
it was not deemed necessary to determine how much worse
they behaved by adding noise to our two test data sets.

Topological tests and analyses are robust and degrade
gracefully with respect to noise �7,11,12�. The very first stud-
ies of the effects of noise on this test were carried out on

experimental data �7,52�. It has been well documented that
the ability to extract unstable periodic orbits from data de-
creases as the signal-to-noise level decreases, but the most
susceptible orbits, the first orbits masked by increasing noise
level, are typically the highest period orbits. As the analysis
depends more heavily on the lower period orbits, noise is far
less inimical to topological analyses than to geometric or
dynamical analyses. In this sense, in the domain of topologi-
cal analysis, “Murphy takes a vacation” �7,11,12�.

It can also be argued that estimates of minimum distances
�cf. Fig. 12� or linking numbers are corrupted by noise.
Noisy periodic orbits are closed orbits. This allows a Fourier
representation for each periodic orbit both to force closure as
well as filter noise by projecting higher-frequency compo-
nents to zero �1�. The Fourier representations of orbits can be
used in place of the noisy orbits for the minimum distance
and linking number calculations. Fourier representations are
not available in the same way for geometric or topological
analyses since the trajectories being analyzed there are cha-
otic, not periodic.

Finally, dimension estimates are impossible, and
Lyapunov exponent estimates are impractical, for nonstation-
ary data. Successful topological analyses have already been
carried out for nonstationary experimental data �51�.

XII. CONCLUSIONS

The two classical types of tests for whether a mapping is
an embedding, depending on geometric and dynamical mea-
sures, have recently been joined by a third type, depending
on topological measures �1�. The latter test is only applicable
to three dimensions, while the classical tests do not have
such a limitation. However, most claims of embeddings into
higher-dimensional spaces stop there: there is little post-
embedding self-consistency checking. In three dimensions a
successful embedding is the beginning of a more detailed
analysis stage in which it is possible to determine the mecha-
nism responsible for generating chaotic data �37,38�.

For this reason alone it is useful to compare the reliability,
simplicity, and robustness of these three different types of
tests where they can be compared: on three-dimensional at-
tractors. We have done so in this work. We find that the
classical tests are often unable to suggest when mapping pa-
rameter values provide an embedding and when they do not;
when they have been able to suggest values, they have been
wrong in every instance studied here. This result calls into
question the reliability of results of the traditional methods in
higher dimensions where topological methods do not yet ex-
ist to reject or fail to reject the results of traditional tests.
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